Part Number Hot Search : 
MV5283 DR331 10C100A 03LT1 102M5 A330M SI786 1N4004G
Product Description
Full Text Search
 

To Download AO3702 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AO3702 N-Channel Enhancement Mode Field Effect Transistor with Schottky Diode
General Description
The AO3702/L uses advanced trench technology to provide excellent RDS(ON), low gate charge. A Schottky diode is provided to facilitate the implementation of a bidirectional blocking switch, or for DC-DC conversion applications. AO3702 and AO3702L are electrically identical. -RoHs Complaint -AO3702L is Halogen Free
Features
VDS (V) = 20V ID = 3.5A (V GS = 4.5V) RDS(ON) < 62m (VGS = 4.5V) RDS(ON) < 70m (VGS = 2.5V) RDS(ON) < 85m (VGS = 1.8V) SCHOTTKY VDS (V) = 20V, I F = 1A, VF<0.5V@0.5A
SOT-23-5 Top View G S A 1 2 3 5 4 D K G
D
K
S
A
Absolute Maximum Ratings T A=25C unless otherwise noted Symbol Parameter VDS Drain-Source Voltage Gate-Source Voltage TA=25C Continuous Drain Current Pulsed Drain Current
B A
MOSFET 20 8 3.5 2.7 25
Schottky
Units V V A
VGS TA=70C ID IDM VKA TA=25C
A
Schottky reverse voltage Continuous Forward Current Pulsed Forward Current Power Dissipation Junction and Storage Temperature Range Parameter: Thermal Characteristics MOSFET t 10s Maximum Junction-to-Ambient A Maximum Junction-to-Ambient A Maximum Junction-to-Lead C Thermal Characteristics Schottky Maximum Junction-to-Ambient Maximum Junction-to-Ambient Maximum Junction-to-Lead C
A A B
TA=70C TA=25C TA=70C
IF IFM PD TJ, TSTG Symbol RJA RJL RJA RJL 1.15 0.7 -55 to 150 Typ 80.3 117 43 153 173 103
20 1 0.5 10 0.66 0.42 -55 to 150 Max 110 150 80 190 220 140
V A
W C Units C/W
Steady-State Steady-State t 10s Steady-State Steady-State
C/W
Alpha & Omega Semiconductor, Ltd.
www.aosmd.com
AO3702
Electrical Characteristics (TJ=25C unless otherwise noted) Symbol Parameter Conditions ID=250A, VGS=0V VDS=20V, VGS=0V TJ=55C VDS=0V, VGS=8V VDS=VGS ID=250A VGS=4.5V, VDS=5V VGS=4.5V, ID=3.5A RDS(ON) Static Drain-Source On-Resistance TJ=125C VGS=2.5V, ID=3A VGS=1.8V, ID=2.5A gFS VSD IS Forward Transconductance VDS=5V, ID=2A IS=1A,VGS=0V Diode Forward Voltage Maximum Body-Diode Continuous Current 0.5 25 50 70 56 66 15 0.7 1 1.6 260 VGS=0V, VDS=10V, f=1MHz VGS=0V, VDS=0V, f=1MHz 48 27 3 2.9 VGS=4.5V, VDS=10V, ID=3.5A 0.4 0.6 2.5 VGS=4.5V, VDS=10V, RL=3, RGEN=6 IF=3.5A, dI/dt=100A/s 3.2 21 3 14 3.4 0.37 0.5 0.1 20 52 9.2 1.7 12 19 4.5 3.8 320 62 90 70 85 S V A pF pF pF nC nC nC ns ns ns ns ns nC V mA pF ns nC 0.68 Min 20 1 5 100 1 Typ Max Units V A nA V A m m
STATIC PARAMETERS BVDSS Drain-Source Breakdown Voltage IDSS IGSS VGS(th) ID(ON) Zero Gate Voltage Drain Current Gate-Body leakage current Gate Threshold Voltage On state drain current
DYNAMIC PARAMETERS Ciss Input Capacitance Coss Crss Rg Output Capacitance Reverse Transfer Capacitance Gate resistance
SWITCHING PARAMETERS Qg Total Gate Charge Qgs Gate Source Charge Qgd tD(on) tr tD(off) tf trr Gate Drain Charge Turn-On DelayTime Turn-On Rise Time Turn-Off DelayTime Turn-Off Fall Time Body Diode Reverse Recovery Time
Qrr Body Diode Reverse Recovery Charge IF=3.5A, dI/dt=100A/s SCHOTTKY PARAMETERS VF Forward Voltage Drop IF=0.5A Irm CT trr Qrr Maximum reverse leakage current Junction Capacitance Schottky Reverse Recovery Time Schottky Reverse Recovery Charge VR=16V VR=16V, TJ=125C VR=10V IF=1A, dI/dt=100A/s IF=1A, dI/dt=100A/s
A: The value of R JA is measured with the device mounted on 1in 2 FR-4 board with 2oz. Copper, in a still air environment with T A =25C. The value in any given application depends on the user's specific board design. The current rating is based on the t 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature. C. The R JA is the sum of the thermal impedence from junction to lead R JL and lead to ambient. D. The static characteristics in Figures 1 to 6 are obtained using <300 s pulses, duty cycle 0.5% max. E. These tests are performed with the device mounted on 1 in SOA curve provides a single pulse rating. Rev1:March 2008
2
FR-4 board with 2oz. Copper, in a still air environment with T A=25C. The
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Alpha Omega Semiconductor, Ltd.
www.aosmd.com
AO3702
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
25 20
4.5V
20
2.5V
16
15 ID (A) 2V 10
12 ID(A) 8 4
VGS=1.5V 5
VGS=4.5V, ID=1.8A VGS=2.5V, ID=1.7A VGS=1.8V, ID=1A
125C 25C
0 0 1 2 3
VGS=1.5V, ID=1A
4 5
0 0 0.5 1 1.5 2 2.5 3 VGS(Volts) Figure 2: Transfer Characteristics 1.60E+00
VDS (Volts) Fig 1: On-Region Characteristics 120 Normalized On-Resistance
VGS=1.8V ID=2.5A VGS=2.5V ID=3A
100 RDS(ON) (m)
1.40E+00
80
VGS=1.8V VGS=2.5V VGS=4.5V 0 1 2 3 4 5 6 7 8 9 10
1.20E+00
VGS=4.5V ID=3.5A
60
1.00E+00
40
8.00E-01 25 50 75 100 125 150 175 Temperature (C) Figure 4: On-Resistance vs. Junction Temperature 1.0E+01 1.0E+00 -50 -25 0
ID (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage 120
100 RDS(ON) (m)
ID=3.5A IS (A)
1.0E-01 125C 1.0E-02 25C 1.0E-03 1.0E-04 1.0E-05
80 125C 60
25C
40 1 2 3 4 5 6 7 8 VGS (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts) Figure 6: Body-Diode Characteristics
Alpha Omega Semiconductor, Ltd.
www.aosmd.com
AO3702
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
5 VDS=10V VDS=10V ID=2.2A ID=3.5A Capacitance (pF) 400 350 300 250 200 150 100 50 0 0 Crss 10 VDS (Volts) Figure 8: Capacitance Characteristics 5 15 Coss Ciss
4
VGS (Volts)
3
2
VGS=4.5V, ID=1.8A VGS=2.5V, ID=1.7A VGS=1.8V, ID=1A
0 0.5 1.5 2 2.5 3 Qg (nC) Figure 7: Gate-Charge Characteristics 1
1
0
VGS=1.5V, ID=1A
3.5
100.0 TJ(Max)=150C TA=25C Power (W) ID (Amps) 10.0 RDS(ON) limited 10us 100us 1.0 10s DC 0.1 0.1 1 VDS (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note E) 10 100 1s 1ms 10ms 100ms
20 16 12 8 4 0 0.001
TJ(Max)=150C TA=25C
0.01
0.1
1
10
100
1000
Pulse Width (s) Figure 10: Single Pulse Power Rating Junction-toAmbient (Note E)
10 ZJA Normalized Transient Thermal Resistance
D=Ton/T TJ,PK=TA+PDM.ZJA.RJA RJA=150C/W
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1
0.1
PD Ton Single Pulse
T 100 1000
0.01 0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance
Alpha Omega Semiconductor, Ltd.
www.aosmd.com
AO3702 TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS: SCHOTTKY
10 125C Capacitance (pF) 1 IF (Amps) 160 120 80 40 25C 0.001 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VF (Volts) Figure 12: Schottky Forward Characteristics 0 0 5 10 15 20 VKA (Volts) Figure 13: Schottky Capacitance Characteristics 200 f=1MHz
0.1
0.01
0.5
1.0E-02
0.4 VF (Volts)
IF=1A
Leakage Current (A)
1.0E-03 VR=20V 1.0E-04 VR=16V
0.3 IF=0.5A 0.2
0.1 0 25 50 75 100 Temperature (C) 125 150
1.0E-05 0 25 50 75 100 125 150 Temperature (C) Figure 15: Schottky Leakage current vs. Junction Temperature
Figure 14: Schottky Forward Drop vs. Junction Temperature 10.000 ZJA Normalized Transient Thermal Resistance D=T on/T T J,PK =T A+PDM.ZJA.RJA RJA=220C/W
In descending order D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
1.000
0.100 PD 0.010 Single Pulse 0.001 0.00001 0.0001 0.001 0.01 0.1 1 10 T on
T
100
1000
10000
Pulse Width (s) Figure 16: Schottky Normalized Maximum Transient Thermal Impedance
Alpha & Omega Semiconductor, Ltd.


▲Up To Search▲   

 
Price & Availability of AO3702

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X